CAE技術情報局

「CAE技術者のための情報サイト」の管理人JIKOのブログ。CAE技術者、機械系技術者向けの技術情報、ホームページの更新情報などを掲載していきます。
スポンサードリンク

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
[ --/--/-- --:-- ] スポンサー広告 | TB(-) | CM(-)

振動の複素数表現について

振動の解析では良く使われる複素数表現についてまとめておきます。
振動解析では、ある振動を表す関数xを振幅の大きさZとして下式のように表します。

image001_20121101222407.png・・・(1)


この時eiωtオイラーの公式と呼ばれ、下式のように表すことができます。

image003_20121101222406.png・・・(2)


式(2)を式(1)に代入して展開します。

image005_20121101222406.png・・・(3)


ここで、Zを単なる実数の振幅ではなく、複素数を用いて定義してみます。

image007_20121101222405.png・・・(4)


Zの大きさ|Z|は下式になります。

image009_20121101222404.png・・・(5)


解析ソフトウェアにおいて、例えば入力荷重の振動振幅を定義する際、実部と虚部をそれぞれ入力できるようになっていることが多いですが、これはまさしく実部をA、虚部をBと定義していることになります。その大きさは式(5)で表されます。

この意味を理解するためにさらに計算をしてみます。式(4)を式(3)に代入します。

image011_20121101222404.png・・・(6)


式(6)を少し整理して実部と虚部に分けます。

image013_20121101222433.png・・・(7)


ここで振動現象に複素数を扱う時の考え方として、” 虚部は無視し、実部のみが物理的な現象を表していると考える”というのがあります(詳しくはこちらを参照)。

そこで式(7)の実部のみを抜き出します。

image015_20121101222433.png・・・(8)


ここで、三角関数の合成の公式を用いると、

image017_20121101222432.png・・・(9)


image019_20121101222431.png・・・(10)


つまり、このように複素数(実部A、虚部B)で振幅を定義することで、振幅はもちろん位相も自由にコントロールすることができるのです。振動現象に複素数を用いることは一見解りにくいところもありますが、慣れてしまえば非常に便利な表現です。

↓よろしければブログランキングにご協力を
にほんブログ村 科学ブログ 技術・工学へ
にほんブログ村

***************************
CAE技術者のための情報サイト
Facebookページ
Google+ページ
***************************
関連記事
[ 2012/11/01 22:46 ] 技術メモ | TB(0) | CM(0)
コメントの投稿












管理者にだけ表示を許可する
トラックバック
この記事のトラックバックURL

検索フォーム
プロフィール

JIKO

Author:JIKO
 とあるメーカに勤め、CAEを担当する技術士(機械部門)。 コンピュータシミュレーションにより製品の強度や性能を評価するのがお仕事。
 CAE技術者のスキルアップを支援する『CAE技術者のための情報サイト』の管理人。
ホームページの詳細プロフィール

↓よろしければブログランキングにご協力を
にほんブログ村 科学ブログ 技術・工学へ
にほんブログ村

カレンダー
02 | 2017/03 | 03
- - - 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 -
書籍
メールフォーム

名前:
メール:
件名:
本文:



上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。